SiO2 Sol-**Gel Composite Films Containing Redox-Active, Polypyridyl**-**Ruthenium Polymers**

Milan Sykora, Kimberly A. Maxwell, and Thomas J. Meyer*

Department of Chemistry, CB#3290, Venable Hall, The University of North Carolina, Chapel Hill, North Carolina 27599-3290

*Recei*V*ed January 6, 1999*

 $SiO₂$ -based sol-gels have been utilized extensively as media for incorporating redox-active, luminescent, or catalytically active molecules.1,2 The mild preparative conditions allow for the incorporation of organic and inorganic dyes, and their glasslike optical properties make sol-gel composites attractive media for various optical applications.^{3,4} The high porosities and large surface areas of these materials have led to applications in chemical sensing⁵ and catalysis.⁶ Early studies focused on hostguest interactions of organic dyes^{1,2,7,8} and, to a lesser extent, inorganic chromophores in sol-gel monoliths.⁹ The redox and photophysical properties of $[Ru(bpy)_3]^{2+}$ (bpy = 2,2'-bipyridine) in thin sol-gel films have also been reported. $8,10-12$ In these films the chromophore remains emissive^{8,11,12} and retains the redox activity of the $Ru^{III/II}$ couple.^{10,11} A disadvantage of these composites is an instability toward loss of the chromophore to an external solution.

We report here an approach which is based on the incorporation of Ruⁿ-bpy derivatized polystyrene polymers and results in stable film structures on optically transparent ITO electrodes. The molecular structure of a repeat unit of the polymer is illustrated below with the polymer abbreviated as $[PS-CH_2CH_2NHCO (Ru^{II})_n|Cl_{2n}$ (*n* = 18 or 20).

The resulting sol-gel/polymer composites are stable in solution and display novel redox properties.

The preparation of the composite films was based on a literature procedure.^{8,11} Briefly, ~20 mg of [PS-CH₂CH₂NHCO-(Ru^{II})_n]- Cl_{2n} ($n = 18$ or 20)^{13,14} was dissolved in 1.7 mL of absolute EtOH with stirring. To the continuously stirred solution were added 5

- (1) Avnir, D. *Acc. Chem. Res.* **¹⁹⁹⁵**, *²⁸*, 328-334.
-
- (2) Dunn, B.; Zink, J. I. *J. Mater. Chem.* **¹⁹⁹¹**, *¹*, 903-913. (3) Burzynski, R.; Prasad, P. N. In *Photonics and Nonlinear Optics With Sol*-*Gel Processed Inorganic Glass: Organic Polymer Composites*; Klein, L. C., Ed.; Kluwer Academic Publishers: Boston, 1994; pp 417- 481.
- (4) Avnir, D.; Braun, S.; Lev, O.; Levy, D.; Ottolenghi, M. In *Organically Doped Sol*-*Gel Porous Glasses: Chemical Sensors, Enzymatic Sensors, Electrooptical Materials, Luminescent Materials, and Photochromic Materials*; Klein, L. C., Ed.; Kluwer Academic Publishers: Boston, 1994;
- pp 539-582. (5) Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J. *Anal. Chem.* **1995**, *67*, 22A-30A.
(6) Sertchook, H.; Avnir, D.; Blum, J.; Joó, F.; Kathó, A.; Schuman, H.;
- Weimann, R.; Wernik, S. *J. Mol. Catal.* **1996**, *108*, 153.

drops (∼0.08 g) of the surface active agent Triton-X 100 (Aldrich), 0.1 mL of 0.01 M HCl, and 0.2 mL of TMOS (tetramethyl orthosilicate $Si(OCH₃)₄$); this composition corresponds to a molar ratio of $Si/Ru = 50$. The solution was stirred for another 30 min. The sol that resulted was aged, typically for 24 h, and deposited onto an ITO electrode by spreading with a glass slide or by spin coating at 5000-8000 rpm. The film was allowed to dry for 2 h at room temperature and then an additional 24 h at 100 °C in the air. Film thicknesses, 700-1500 nm for films prepared by spreading and 100-400 nm by spin coating, were determined by step profilometry. The concentration of Ru^{II} sites was estimated by UV-visible measurements (from ϵ_{456} = 15 300 $M^{-1}cm^{-1}$ for [PS-CH₂CH₂NHCO-(Ru^{II})₂₀](PF₆)₃₆ in CH₃CN),¹⁴ which gave [Ru^{II}] \sim 0.2 M.

In Figure 1 is shown a cyclic voltammogram in $CH₃CN$, 0.1 M in $[N(n-C_4H_9)_4](PF_6)$ (TBAH), of an ITO/SG- $[PS-CH_2CH_2-$ NHCO- $(Ru^{II})_{18}$]Cl₃₆ film (SG = sol-gel) of thickness ~300 nm, at a scan rate of 2 mV/s. $E_{1/2}$ for the Ru^{III/II} couple appears at 1.26 V (vs SSCE). The figure also illustrates the changes in film absorbance at 456 nm, λ_{max} for the lowest $Ru^{II} \rightarrow bpy$ metal-toligand charge transfer (MLCT) absorption band, during the potential sweep. As indicated by the loss in absorbance following the $Ru^{II} \rightarrow Ru^{III}$ oxidative sweep, oxidation is complete within a single potential scan at this slow scan rate. Chronoabsorptometry measurements with a potential step to $+1.81$ V demonstrate loss of the MLCT band concomitant with the appearance of a new band with $λ_{max}$ ~420 nm for Ru(III).¹⁵ The absorbance changes are complete within ∼5 min. A reverse step to 0 V resulted in full ($>90\%$) recovery of Ru^{II} consistently with the results shown in Figure 1. Plots of current (*i*) vs $t^{1/2}$ are linear (for $t \le 30$ s), and from a Cottrell analysis,¹⁶ the apparent diffusion coefficient for $Ru^{II} \to Ru^{III}$ oxidation is $D_{ct} = 1.4 \times 10^{-9}$ cm²/s, which is comparable to D_c values obtained in other rigid media ¹⁷ Cyclic comparable to D_{ct} values obtained in other rigid media.¹⁷ Cyclic voltammetric measurements as a function of scan rate show that the oxidative peak current, $i_{p,a}$, varies as the square root of the scan rate from 2 mV/s to 1000 mV/s , consistent with diffusionlimited charge transfer. The peak-to-peak separation, $\Delta E_p = E_{p,c}$ to $E_{p,a}$, increased from 45 to 370 mV in the same scan rate range. Intrastrand, site-to-site electron transfer within individual poly-

- (7) Avnir, D.; Levy, D.; Reisfeld, R. *J. Phys. Chem.* **¹⁹⁸⁴**, *⁸⁸*, 5956-5959. (8) Avnir, D.; Kaufman, V. R.; Reisfeld, R. *J. Non-Cryst. Solids* **1985**, *74*,
- ³⁹⁵-406. (9) Castellano, F. N.; Meyer, G. J. In *Light-Induced Processes in Molecular Gel Materials*; Meyer, G. J., Ed.; John Wiley & Sons: New York, 1997; Vol. 44, pp $167 - 208$.
- (10) Petit-Dominguez, M. D.; Shen, H.; Heineman, W. R.; Seliskar, C. J. Anal. Chem. 1997, 69, 703-710.
- *(11)* Dvorak, O.; DeArmond, K. M. J. Phys. Chem. 1993, 97, 2646-2648. (11) Dvorak, O.; DeArmond, K. M. *J. Phys. Chem.* **¹⁹⁹³**, *⁹⁷*, 2646-2648.
- (12) Innocenzi, P.; Kozuka, H.; Yoko, T. *J. Phys. Chem. B* **¹⁹⁹⁷**, *¹⁰¹*, 2285- 2291.
- (13) Friesen, D. A.; Kajita, T.; Danielson, E.; Meyer, T. J. *Inorg. Chem.* **1998**, *³⁷*, 2756-2762.
- (14) Maxwell, K. A. Ph.D. Thesis, University of North Carolina, Chapel Hill, 1999.
- (15) McCaffery, A. J.; Mason, S. F.; Norman, B. J. *J. Chem. Soc. A* **1969**, ¹⁴²⁸-1441. (16) Bard, A. J.; Faulkner, L. R. *Electrochemical Methods*, 1st ed.; Wiley:
- New York, 1980.
- (17) Murray, R. W. In *Molecular Design of Electrode Surfaces*; Weissberger, A., Saunders, W. H., Eds.; John Wiley and Sons: New York, 1992; Vol. 22, p 427.

10.1021/ic990054d CCC: \$18.00 © 1999 American Chemical Society Published on Web 07/16/1999

Figure 1. Cyclic voltammogram (solid line) and simultaneous absorbance change (dashed line) for an ITO/SG-[PS-CH₂CH₂NHCO-(Ru^{II})₁₈]Cl₃₆ film with Si/Ru = 50 ([Ru^{II}] \sim 0.2 M), with film thickness \sim 300 nm at 2 mV/s in CH3CN, 0.1 M in TBAH.

Figure 2. Cyclic voltammograms of ITO/SG-[PS-CH₂CH₂NHCO-
(Ru^{II})₂₀]Cl₄₀ with Si/Ru = 50 ([Ru^{II}] \sim 0.2 M) for a film of thickness $(Ru^{II})_{20}$]Cl₄₀ with Si/Ru = 50 ([Ru^{II}] ~ 0.2 M) for a film of thickness ~400 nm exposed to 0.1 mM [Os(bpy)₃]²⁺ in CH₃CN, 0.1 M in TBAH, (A) as a function of scan rate and (B) as a function of potential step.

meric strands is expected to be rapid,¹⁸ and either counterion diffusion or interstrand electron transfer hopping or both are presumably rate limiting.

The polymer-doped films are stable toward leaching into an external solution. The instability of $SG - [Ru(bpy)_3]Cl_2$ composite films toward leaching of the complex under repetitive scan conditions in water has been reported.^{10,11} In CH₃CN, films doped with $[Ru(bpy)_3]Cl_2$ leach rapidly with ∼70% of the chromophore lost within 1 h. The polymer composites are stable under the same conditions for a period of at least 2 weeks. The increased stability is also observed under repetitive scan conditions through the $Ru^{III\bar{III}}$ wave at $E_{1/2} = 1.26$ V (vs SSCE) with no decrease in peak current after 50 potential scans between 0.31 and 1.81 V (vs SSCE) in acetonitrile 0.1 M in TBAH or water 0.01 M in NaCl.

We have observed novel mediation effects in the composite films. In Figure 2 are shown series of cyclic voltammograms of an ITO/SG-[PS-CH₂CH₂NHCO-(Ru^{II})₂₀]Cl₄₀ film with [Os- $(bpy)_3$]²⁺ in the external solution. The appearance of the Os^{III/II} wave at $E_{1/2} = 0.50$ V (0.81 V vs SSCE) indicates that the

Figure 3. Cyclic voltammograms: (solid line) ITO/SG-[PS-CH₂CH₂-NHCO-(Ru^{II})₂₀]Cl₄₀ (Si/Ru = 50; film thickness ~400 nm) exposed to a 0.5 mM solution of $[PS-CH_2CH_2NHCO-(Os^H)₂₀](PF₆)₄₀$ in CH₃CN (0.1 M TBAH); (dotted line) blank ITO electrode exposed to the same solution; (dashed line) the composite film exposed to CH3CN (0.1 M TBAH). Scan rate 10 mV/s, electrode area in all cases 1 cm2.

composite films are open to diffusion from the external solution. The scan rate dependence reveals the existence of a "prewave" at the onset of the diffusional Os(III \rightarrow II) wave with *i*_p occurring at ∼0.53 V (0.84 V vs SSCE). The origin of the prewave is obvious from results of the potential scan experiments shown in Figure 2B. It appears only after a potential scan past the $Ru^{III/II}$ couple. Its origin is in the reduction of a fraction of the Ru^{III} sites (formed during the oxidative scan), by freely diffusing [Os- $(bpy)_3$ ²⁺. The fraction of unreacted sites and the magnitude of the prewave depend on scan rate, the potential step, the concentration of $[Os(bpy)₃]^{2+}$ in the external solution, and both film thickness and porosity.

Use of the film as a redox mediator was investigated in experiments in which an ITO/SG- $[PS-CH_2CH_2NHCO-(Ru^{II})_{20}]$ - Cl_{40} film was exposed to a solution containing $[PS-CH_2CH_2 NHCO - (Os^H)₂₀$](PF₆)₄₀ (Figure 3). The absence of a well-defined diffusional wave for the $Os^{\overline{II}I\overline{II}}$ couple at 0.50 V (0.81 V vs SSCE) demonstrates that the polymer is unable to diffuse through the film.19 Extension of the oxidative scan results in a new wave which appears as a shoulder on the Ru(II^{->}III) wave at $E_{p,a}$ = 0.85 V (1.16 V vs SSCE). There is no evidence for $\text{Os(III}\rightarrow\text{II})$ re-reduction on a reverse scan. The same behavior is observed in "bilayer" films containing spatially separated $[Ru(bpy)_3]^{2+}$ and $[Os(bpy)₃]$ ²⁺ derivatives in electropolymerized films.²⁰⁻²² In the case of $[PS-CH_2CH_2NHCO-(Os^H)₂₀](PF₆)₄₀$, diffusion to the underlying ITO electrode is blocked and the multiple Os^{II} sites in the polymer are oxidized at the film-solution interface. Electron transfer to ITO occurs through the film by $Ru^{II} \rightarrow Ru^{III}$ electron transfer migration at the onset of the Ru^{III/II} wave. Unidirectional $\mathrm{Os}^{\Pi} \rightarrow \mathrm{Os}^{\Pi}$ oxidation and the rectifying behavior that results occur because $Os(III\rightarrow II)$ reduction by Ru^{II} at the film-solution interface is nonspontaneous by 0.45 V.

These initial results show that the $SG-[PS-CH_2CH_2NHCO (Ru^{II})_n|Cl_{2n}$ composite films form a new class of optically transparent, redox-active membranes. We are currently investigating their redox properties in further detail.

Acknowledgment. This work was supported equally by the Army Research Office (Grant No. DAAH04-95-1-0144) and the Department of Energy (Grant No. DE-FG02-96ER14607). We thank Dr. T. Kajita for providing a sample of $[PS-CH_2CH_2 NHCO-(Ru^{II})_{18}](PF_6)_{36}$

IC990054D

- (19) The small feature at [∼]0.50 V is due to the oxidation of [PS-CH2CH2- $NHCO - (Os^H)₂₀](PF₆)₄₀$ at the edges of the electrode, where the ITO is not covered with the composite film.
- (20) Denisevich, P.; Willman, K. W.; Murray, R. W. *J. Am. Chem. Soc.* **1981**, *103*, 4727.
- (21) Abruña, H. D.; Denisevich, P.; Umaña, M.; Meyer, T. J. *J. Am. Chem. Soc.* **1981**, *103*, 1.
- (22) Denisevich, P.; Abruña, H. D.; Leidner, C. R.; Meyer, T. J.; Murray, R. W. *Inorg. Chem.* **¹⁹⁸²**, *²¹*, 2153-2161.

⁽¹⁸⁾ Jones, W. E.; Baxter, S. M.; Strouse, G. F.; Meyer, T. J. *J. Am. Chem. Soc.* **1993**, *115*, 7363.